# Grade 11/12 Math Circles <br> March 82023 <br> Dynamical Systems and Fractals - Solutions 

## Exercise Solutions

## Exercise 1

Consider the following generator, $G$.

which acts by removing the middle third of line segments. Repeated application of $G$ results in the following fractal set, referred to as the Cantor set.


Determine an appropriate value of $r$ and use the scaling relation to find the fractal dimension, $D$, of the Cantor set.

Letting $r=\frac{1}{3}$ we see that if it takes $N(\epsilon)$ measuring sticks of length $\epsilon$ (or $\epsilon$-tiles if you prefer) to cover the Cantor set, then it will take $N\left(\frac{1}{3} \epsilon\right)=2 N(\epsilon)$ measuring sticks of length $\frac{1}{3} \epsilon$ to cover the Cantor set.

Putting this into the scaling relation we get

$$
N\left(\frac{1}{3} \epsilon\right)=2 N(\epsilon)=N(\epsilon)\left(\frac{1}{3}\right)^{-D} .
$$

Solving for $D$ yields $D=\frac{\log (2)}{\log (3)} \approx 0.63$. The Cantor set is somewhere between zero-dimensional and one-dimensional.

## Exercise 2

Consider the linear function $f(x)=a x+b$. Show that when $0<a<1, f(x)$ is a contraction mapping on the domain $[0,1]$. Determine the contraction factor of $f$.

To show that $f$ is a contraction mapping, consider $x$ and $y \in[0,1]$. We see that

$$
\begin{aligned}
|f(x)-f(y)| & =|a x+b-(a y+b)| \\
& =|a x-a y+b-b| \\
& =|a x-a y| \\
& =a|x-y| \\
& \leq a|x-y| .
\end{aligned}
$$

Since $0<a<1, f$ is a contraction mapping. The contraction factor of $f$ is $a$.

## Problem Set Solutions

1. Consider the logistic function $f(x)=r x(1-x)$ where $0<r \leq 4$. In the lesson we saw (by looking at a plot of the iterates) that when $r>3$ this function has a two-cycle. Now, let's show it algebraically. Last week we learned that we can solve for the period two points of $f(x)$ by solving the expression $f^{[2]}(\bar{x})=\bar{x}$, however as $f(x)$ gets more complicated this can leave us with some messy equations to solve. In this question we will work through an easier way to solve for the two-cycle of $f(x)$.
(a) Let $\left\{p_{1}, p_{2}\right\}$ be the two-cycle of $f(x)$. In order for this to be a two-cycle we must have that $f\left(p_{1}\right)=p_{2}$ and $f\left(p_{2}\right)=p_{1}$. Use this fact to write down two expressions relating $p_{1}$ and $p_{2}$.
(b) Now subtract the two expressions you found in (a) and use the fact that $p_{1} \neq p_{2}$ to simplify the resulting expression. You should end up with an expression which is linear in both $p_{1}$
and $p_{2}$.
(c) Finally, substitute this expression back into one of the expressions you found in (a) to solve for either $p_{1}$ or $p_{2}$. Use this result to show that $f(x)$ only has a (real-valued) two-cycle when $r>3$.

## Solution:

(a) Using $f\left(p_{1}\right)=p_{2}$ and $f\left(p_{2}\right)=p_{1}$ we have the following two expressions

$$
\begin{aligned}
& r p_{1}\left(1-p_{1}\right)=p_{2} \\
& r p_{2}\left(1-p_{2}\right)=p_{1}
\end{aligned}
$$

which relate $p_{1}$ and $p_{2}$.
(b) Subtracting the two expressions from (a) gives

$$
\begin{aligned}
r p_{1}\left(1-p_{1}\right)-r p_{2}\left(1-p_{2}\right) & =p_{2}-p_{1} \\
r\left(p_{1}-p_{2}\right)-r\left(p_{1}^{2}-p_{2}^{2}\right) & =p_{2}-p_{1} \\
r\left(p_{1}-p_{2}\right)-r\left(p_{1}-p_{2}\right)\left(p_{1}+p_{2}\right) & =p_{2}-p_{1}
\end{aligned}
$$

Since $p_{2} \neq p_{1}$ (by the definition of a two-cycle) we can divide both sides by $p_{1}-p_{2}$, resulting in

$$
\begin{aligned}
r-r\left(p_{1}+p_{2}\right) & =-1 \\
p_{1}+p_{2} & =\frac{1+r}{r} \\
p_{1} & =\frac{1+r}{r}-p_{2} .
\end{aligned}
$$

(c) Finally, we substitute our result from (b) back into one of our expressions from (a) to solve for $p_{1}$ or $p_{2}$. Since $p_{1}$ and $p_{2}$ are interchangeable in our initial formulation
it doesn't matter which one we solve for.

$$
\begin{aligned}
r p_{2}\left(1-p_{2}\right) & =\frac{1+r}{r}-p_{2} \\
r p_{2}-r p_{2}^{2} & =\frac{1+r}{r}-p_{2} \\
r p_{2}^{2}-(r+1) p_{2}+\frac{1+r}{r} & =0 .
\end{aligned}
$$

Using the quadratic formula we get

$$
\begin{aligned}
p_{2} & =\frac{r+1}{2 r} \pm \frac{\sqrt{(r+1)^{2}-4 r \frac{1+r}{r}}}{2 r} \\
& =\frac{r+1}{2 r} \pm \frac{\sqrt{(r+1)(r-3)}}{2 r} .
\end{aligned}
$$

Since $r>0$, this has two distinct (real) solutions when $r>3$. Thus, we have a two-cycle when $r>3$.
2. Consider a circle $C$ which has radius 1. Now consider inscribing $C$ with a regular polygon $P_{n}$ which has $2^{n}$ equal sides, as shown in the figure below. The idea is that we can consider the length $\left(L_{n}\right)$ of the perimeter of $P_{n}$ as an approximation for the circumference $(L=2 \pi)$ of the circle $C$.

(a) Write down an expression for $L_{n}$ (the length of the perimeter of $P_{n}$ ).
(b) CHALLENGE (You will need to be familiar with limits in order to solve this next part.) Show that $\lim _{n \rightarrow \infty} L_{n}=L=2 \pi$.

Hint: You may work with angles in either degrees or radians (if you are familiar with radians). You will need to use the fact that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ (when $x$ is in radians) or that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\frac{\pi}{180}$ (when $x$ is in degrees).

Solution: Working with angles in degrees (solution using radians is very similar):
(a) To start, we need the length of each side of $P_{n}$, which is given by

$$
2 \cdot \sin \left(\frac{\theta_{n}}{2}\right)=2 \cdot \sin \left(\frac{360^{\circ}}{2^{n+1}}\right)
$$

as seen on the following figure.


Since $P_{n}$ has $2^{n}$ sides, the length of its perimeter is given by

$$
\begin{aligned}
L_{n} & =2^{n} \cdot 2 \cdot \sin \left(\frac{360^{\circ}}{2^{n+1}}\right) \\
& =2^{n+1} \cdot \sin \left(\frac{360^{\circ}}{2^{n+1}}\right) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty} L_{n} & =\lim _{n \rightarrow \infty} 2^{n+1} \cdot \sin \left(\frac{360^{\circ}}{2^{n+1}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{360^{\circ}}{2^{n+1}}\right)}{\frac{1}{2^{n+1}}}
\end{aligned}
$$

Now, let $x_{n}=\frac{360^{\circ}}{2^{n+1}}$. As $n \rightarrow \infty, x_{n} \rightarrow 0$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} L_{n} & =\lim _{x_{n} \rightarrow 0} \frac{\sin \left(x_{n}\right)}{\frac{x_{n}}{360^{\circ}}} \\
& =360^{\circ} \lim _{x_{n} \rightarrow 0} \frac{\sin \left(x_{n}\right)}{x_{n}} \\
& =360^{\circ} \cdot \frac{\pi}{180^{\circ}} \\
& =2 \pi
\end{aligned}
$$

which gives the desired result.
3. Consider the generator $G$ sketched below:

where $0<r_{1}<1,0<r_{2}<1$ and $1<r_{1}+r_{2}<2$.
(a) Starting with the set $J_{0}=[0,1]$, sketch $J_{1}=G\left(J_{0}\right)$ and $J_{2}=G\left(J_{1}\right)$.
(b) What is the length of $J_{1}\left(L_{1}\right)$ ? Of $J_{2}\left(L_{2}\right)$ ? In general, can you find an expression for the length of $J_{n}=G^{n}\left(J_{0}\right)$ ?
(c) What do you expect to happen to the length of $J_{n}$ as $n$ gets infinitely large (i.e. as the set $J_{n}$ approaches the attractor)?

## Solution:

(a) $J_{1}$ and $J_{2}$ are as follows

(b) The length of $J_{1}$ is $L_{1}=r_{1}+r_{2}$.

The length of $J_{2}$ is $L_{2}=r_{1}^{2}+2 r_{1} r_{2}+r^{2}=\left(r_{1}+r_{2}\right)^{2}$.

In general, $G$ scales the length of each line segment by a factor of $r_{1}+r_{2}$ so we can write $L_{n}=\left(r_{1}+r_{2}\right)^{n}$.
(c) Since $r_{1}+r_{2}>1, \lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty}\left(r_{1}+r_{2}\right)^{n}=\infty$. In other words, as $n$ gets infinitely large, the length of $J_{n}$ will approach infinity (meaning that the attractor has infinite length).
4. Consider the following two function iterated function system (IFS) on $[0,1]$,

$$
f_{1}(x)=\frac{1}{5} x, \quad f_{2}(x)=\frac{1}{5} x+\frac{4}{5} .
$$

(a) Let $I_{0}=[0,1]$ and $I_{1}=F\left(I_{0}\right)$ where $F$ is the parallel IFS operator composed of the two functions $f_{1}$ and $f_{2}$. Sketch $I_{1}$ on the real number line.
(b) Let $I_{2}=F\left(I_{1}\right)$. Sketch $I_{2}$ on the real number line.
(c) Let $I$ denote the limiting set (or attractor) of this IFS. Use the scaling relation to determine
the fractal dimension $D$ of $I$.
Hint: $D$ will be a ratio of two logarithms.

## Solution:

(a) $I_{1}$ is as follows

(b) $I_{2}$ is as follows


## $I_{2}$

(c) Letting $r=\frac{1}{5}$ we see that $N(r \epsilon)=2 N(\epsilon)$ (one measuring stick of length one, two of length $\frac{1}{5}$, four of length $\frac{1}{25}$, etc...). Putting this into the scaling relation we get

$$
N\left(\frac{1}{5} \epsilon\right)=2 N(\epsilon)=N(\epsilon)\left(\frac{1}{5}\right)^{-D}
$$

which implies

$$
\begin{aligned}
2 N(\epsilon) & =N(\epsilon)\left(\frac{1}{5}\right)^{D} \\
2 & =5^{D} \\
D & =\frac{\log (2)}{\log (5)} \approx 0.43 .
\end{aligned}
$$

5. Show that the function $f(x)=x^{2}$ is a contraction mapping on the domain $\left[0, \frac{1}{4}\right]$. Determine the contraction factor of $f$.

Solution: Let $x, y \in\left[0, \frac{1}{4}\right]$. Then

$$
\begin{aligned}
|f(x)-f(y)| & =\left|x^{2}-y^{2}\right| \\
& =|x+y||x-y| \\
& \leq \frac{1}{2}|x-y| .
\end{aligned}
$$

Therefore $f$ is a contraction mapping with contraction factor $\frac{1}{2}$ on the domain $\left[0, \frac{1}{4}\right]$.
6. Consider the image of the Sierpinski carpet, $S$, shown below. The Sierpinski carpet is a selfsimilar fractal which means that is a union of contracted copies of itself.

(a) Show (by circling them on the figure) that $S$ is made up of eight contracted copies of itself. What is the contraction factor of these copies?
(b) Determine the similarity dimension of $S$.

## Solution:

(a) We see that there are eight contracted copies of $S$, as shown on the following figure. We can also see from the figure that each copy of $S$ is scaled down by $\frac{1}{3}$, or has a contraction factor of $\frac{1}{3}$.

(b) Since $S$ is made up of eight copies of itself, each scaled by a factor of $\frac{1}{3}$, the similarity dimension of $S$ is

$$
D=\frac{\log (8)}{\log (3)} \approx 1.89
$$

7. Consider the image of the modified Sierpinski triangle, $S$, shown below.

(a) Show (by circling them on the figure) that $S$ is made up of three contracted copies of
itself.
(b) Imagine starting with a right triangle, $S_{0}$, which has vertices at $(0,0),(1,0)$, and $(0,1)$. Describe (in terms of contraction factors, translations, rotations, etc...) the three map IFS which you could use to construct $S$ from $S_{0}$.
(c) Determine the similarity dimension of $S$.
(d) CHALLENGE Describe a fourth map which could be added to the IFS you found in (b) so that the attractor of the IFS is a solid triangular region.

## Solution:

(a) We can see from the figure below that $S$ is made up of three contracted copies of itself.

(b) We can see from the figure that $S$ is made up of three scaled copies of itself, each contracted by a factor of $\frac{1}{2}$.

The first map simply scales $S_{0}$ by $\frac{1}{2}$, resulting in the triangle in the bottom left corner. The second map scales $S_{0}$ by $\frac{1}{2}$ and translates it to the right by $\frac{1}{2}$, resulting in the triangle in the bottom right corner. Finally, the third map scales $S_{0}$ by $\frac{1}{2}$ and translates it upwards by $\frac{1}{2}$ to form the triangle in the top corner.
(c) The similarity dimension of $S$ is given by

$$
D=\frac{\log (3)}{\log (2)} \approx 1.56
$$

(d) If we want the attractor of the IFS to be a solid triangular region, we need to add a fourth map which will fill up the triangular gap in the middle. We can do this by defining a map which scales $S_{0}$ by $\frac{1}{2}$, rotates it by $180^{\circ}$ and translates it by $\frac{1}{2}$ up and to the right.

